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Abstract
We use a non-Lagrangian method to express the generalized nonlinear
Schrödinger equation, for pulse propagation in optical fibres, in terms of the
pulse parameters, called collective variables, such as the pulse width, amplitude,
chirp and frequency. The collective variable equations of motion, which include
the important effects due to fibre losses, third-order dispersion, stimulated
Raman scattering and self-steepening are derived using a direct averaging
method without the help of any Lagrangian.

PACS numbers: 4281D, 4265T, 0545Y

Intense light pulses propagating in optical fibres may induce a host of nonlinear phenomena
such like parametric wave mixing, stimulated Raman scattering, or self-steepening [1, 2]. The
combined effects of those nonlinear phenomena and the fibre chromatic dispersion, lead, in
general, to complicated dynamical processes, which are particularly difficult to understand
from a direct analysis of the original electromagnetic field associated with the light pulse,
say φ. To easily understand such dynamical processes, one generally attempts to reduce the
dynamics of the pulse field φ, which involves an infinite (in practice, a very large) number of
degrees of freedom, to the dynamics of a simple mechanical system having only a few degrees
of freedom. The corresponding mechanical system may take the form of a particle embedded
in a substrate potential, a diatomic molecule, or even a more complicated molecular system,
depending on the degree of complexity of the pulse dynamics. Then, one associates each
degree of freedom of the mechanical system with a variable, called a collective variable (CV),
describing a relevant physical parameter for the pulse (temporal position, amplitude, width,
etc). The achievement of this CV approach depends on the possibility of transforming the
partial differential equation for the original field φ, into a set of ordinary differential equations
for the CVs. Although such CV approaches have been applied successfully to condensed
matter systems, in particular to nonlinear Klein–Gordon and similar systems [3–7], the actual
stage of CV treatments of nonlinear partial differential equations in nonlinear fibre optics
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happens to be surprisingly much less elaborated than in condensed matter physics. The reason
for this is that, from the period of invention of optical solitons up to very recent years, the
main line of research in ultra-high-capacity fibre communications was based on the concept
of the ‘classical soliton’, which represents an exact balance between the fibre group-velocity
dispersion and its intensity-dependent refractive index. This soliton arises as a solution of the
standard nonlinear Schrödinger equation (NLSE), with a well known hyperbolic secant profile
that can be obtained by different techniques (e.g. the inverse scattering transform [8]), without
going through any CV approach [9].

One of the major lines of current research in optics communications focuses on the
modelling of soliton transmissions in dispersion-managed (DM) fibre-optic links, with a
view both to the upgrade of the capacity of existing terrestrial networks, and the design of
submarine fibre systems [10]. Basically, the dispersion-management technique consists of
using a transmission line with a periodic dispersion map such that each period is built up by
two types of fibres of generally different lengths and opposite group-velocity dispersion [10].
It is now well recognized that the DM technique is one of the most promising way to achieve
ultra-high-bit rate transmissions (multiterabit) over thousands of km in near-future systems
[10]. The main limitations in the performance of such fibre links come from detrimental linear
and nonlinear effects; such as the cross-phase modulation, filtering, phase and amplitude
modulation, third-order dispersion, stimulated-Raman scattering effects, or self-steepening.
The dynamical equation that governs the nonlinear pulse propagation in DM fibres with all
higher-order effects, is the generalized nonlinear Schrödinger equation [10]. Because of the
functional dependence of the fibre parameters upon the propagation coordinate, the NLSE is
not at all integrable. In this context, the CV approach is very much useful for the study of the
dynamical behaviour of the optical pulses in DM fibres.

In most of the early literature that has used CVs in the context of optical solitons in
fibres, a significant effort was made to analyse the soliton dynamics under the influence
of various perturbing factors such as third-order dispersion, stimulated Raman scattering or
self-steepening [11–17]. Different perturbation theories were developed, using the adiabatic
variation of conserved quantities of the NLSE [11], the adiabatic variation of the scattering
data based on the inverse scattering transform [12–14], or the Lagrangian perturbation theory
[15]. However, these perturbation theories yield consistent results only in the limit of weak
perturbations. This limitation has led to the formulation of non-perturbative CV theories
for the NLSE using the averaged Lagrangian method [10, 18–20]. Most of the recent and
current theoretical developments have employed this Lagrangian method (also known as the
variational approach) to describe pulse propagation in DM optical fibre transmission lines
[19, 20].

The Lagrangian method basically needs the exact form of the Lagrangian corresponding
to the NLSE to derive the CV equations of motion. If we consider the effects of optical losses,
higher-order dispersion, stimulated Raman scattering and self-steepening, the dynamics of the
pulse propagation in optical fibres is governed by a generalized NLSE [1, 2]. A Lagrangian
corresponding to the generalized NLSE is not available. So it is not possible to derive the CV
equations for the generalized NLSE using the Lagrangian method without any perturbation
theory. In this paper, we derive the explicit form of the CV equations for the generalized NLSE
using a direct averaging approach, which does not require any Lagrangian. We use a direct
averaging method to derive the CV equations for nonlinear Schrödinger solitons with the help
of the Ehrenfest theorem [21–24].

The NLSE takes the form [1, 2]

ψ̇ + i
β2

2
ψtt − iγ |ψ |2ψ = 0 (1)
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where ψ is the slowly varying envelope of the axial field, overdot and subscript t denote the
spatial and temporal partial derivatives, respectively. β2 and γ represent the group-velocity
dispersion and self-phase modulation parameters, respectively.

As a first step let us express the original field ψ in the coupled amplitude–phase form as

ψ(z, t) = φ(z, t) exp[iS(z, t)] (2)

where φ and S represent the amplitude and phase of ψ , respectively.
By substituting equation (2) into equation (1), we obtain the equations for amplitude and

phase, respectively, from real and imaginary parts as

φ̇

φ
= β2φtSt

φ
+
β2Stt

2
(3a)

Ṡ = γφ2 +
β2S

2
t

2
− β2φtt

2φ
. (3b)

With the new variables defined as v ≡ St , a(z, t) ≡ φt/φ and h(z, t) ≡ −φ̇/[β2φ], we rewrite
equation (3a) as

∂v

∂t
+ 2a(z, t)v + 2h(z, t) = 0. (4)

Integrating equation (4) with respect to time yields

v(z, t) = v0(z, t)

φ2
(5)

where v0 is determined by

∂v0(z, t)

∂t
= 2φφ̇

β2
. (6)

At this point, we assume an ansatz function for φ in the form

φ(z, t) = X1(z)φ̃

[
t −X2(z)

X3(z)

]
(7)

which introduces three collective variables X1(z), X2(z) and X3(z) into the system, where
X1(z) represents the amplitude, X2(z) ≡ 〈t〉 describes the temporal position and X3(z) is the
width of the pulse. Here the averaging is the usual quantum expectation value

〈Ô〉 =
∫ ∞

−∞
ψ∗(z, t)Ôψ(z, t) dt . (8)

Substituting the ansatz (7) into equation (6) and integrating the resulting equation yields

v0(z, t) = −Ẋ3

β2

[t −X2]

X3
φ2 − Ẋ2

β2
φ2 + R(z) +

1

2X3

d(X3X
2
1)

dz

∫
φ̃2 dt. (9)

Then, equation (5) becomes

v(z, t) = −Ẋ3

β2

[t −X2]

X3
− Ẋ2

β2
+
R(z)

φ2
+

1

2φ2X3

d(X3X
2
1)

dz

∫
φ̃2 dt (10)

where R(z) is a constant of integration.
The last term on the right-hand side of equation (10) contains the term

∫
φ̃2 dt which

must be completely worked out to explicitly express v, and then S, in terms of the collective
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variables. To continue the procedure of derivation of the CV equations of motion, we consider
a class of ansatz satisfying

d

dz
(X3X

2
1) = 0 (11)

which cancels the last term on the right-hand side of equation (10). Note that equation (11)
implies that

E0 ∝ X3(z)X
2
1(z) = X3(0)X

2
1(0). (12)

In other words, using equations (11) and (12), we assume, in fact, that the energy of the soliton
(E0) is conserved during the dynamics. In this situation, the ansatz in equation (7) becomes

φ(z, t) =
√
E0

X3
φ̃

[
t −X2(z)

X3(z)

]
. (13)

At this point, we define a variable, ξ ≡ [t −X2(z)]/X3(z) and thus φ̃ will become an explicit
function of ξ . On the other hand, in equation (10), the constant of integration R(z) must be
set to zero to maintain finite variations of St for all t , and in particular, for soliton boundary
conditions: φ(t = ±∞) = 0. Then, the integration of equation (10) with respect to time
yields explicitly the functional of the phase upon the collective variables X2 and X3,

S(z, t) = −Ẋ3(z)

2β2X3(z)
[t −X2(z)]

2 − Ẋ2

β2
[t −X2(z)] +X6(z) (14)

where X6(z) is a constant of integration which represents the phase of the pulse.
Here, it should be once again emphasized that one of the main goals of our collective

variable approach is to show that CV equations can be obtained without having to explicitly
construct the Lagrangian associated with the original NLSE. We only need to know the
functional dependence of the amplitude φ and phase S upon the collective variables. Then,
all the CV equations can be directly obtained from the original field equations (3a) and (3b),
through an iterative procedure of differentiation and subsequent averaging. To be more explicit,
substitution of equation (14) into equation (3b) yields

−X3

β2
Ẍ2ξ − Ẍ3X3

2β2
ξ 2 +G(z) = f (15)

where

f = −γX
2
1

X3
φ̃2 − β2

2X2
3

φ̃ξξ

φ̃
(16a)

G(z) = Ẋ6 +
Ẋ2

2

2β2
. (16b)

To obtain the equations for Ẍ2, Ẍ3 and G, we proceed as follows.
Averaging equation (15) yields

− Ẍ3X3

2β2
η2 +N0G(z) = −γ X

2
1

X3
δ2 +

β2µ
2

2X2
3

(17)

where µ2 = ∫ ∞
−∞ φ̃

2
ξ dξ , δ2 = ∫ ∞

−∞ φ̃
4 dξ , η2 = ∫ ∞

−∞ ξ
2φ̃2 dξ and N0 = ∫ ∞

−∞ φ̃
2 dξ .

To obtain the next equation there are two options: one can either multiply equation (15)
by ξ or differentiate equation (15) with respect to ξ . We follow the later to obtain

−X3

β2
Ẍ2 − Ẍ3X3

β2
ξ = df

dξ
. (18)
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Averaging equation (18) yields

Ẍ2 = 0. (19)

An important point to be noticed here is that averaging equation (18) does not require
the explicit calculation of the corresponding integrals. Indeed, the term multiplying Ẍ3 in
equation (18) is an odd function of ξ (since f is an even function of ξ ); its average is zero.

To obtain the third equation, which will determine together with equation (17) and (19)
the whole set of functions Ẍ2, Ẍ3 and G, one can either multiply equation (18) by ξ or
differentiate with respect to ξ . However, an interesting point to be emphasized here is that
these two options are not strictly equivalent in the sense that they do not formally lead to the
same equation. Indeed, in general, one of these two options will generate many coefficients
that differ from those already generated (µ2, δ2, η2 and N0), thus increasing the number of
calculations. Consequently, a general rule which one can formulate is to systematically choose
the option which leads to no or fewer additional coefficients. Thus multiplying both sides of
equation (18) by ξ and taking the average of the resulting equation yields

Ẍ3 = β2
2µ

2

X3
3η

2
− γβ2δ

2X2
1

2X2
3η

2
. (20)

Finally, equation (15) determines the profile of the function φ̃ as

d2φ̃

dξ 2
+

2γX3X
2
1

β2
φ̃3 +

2X2
3

β2

[
G(z)− X3Ẍ3

2β2
ξ 2

]
φ̃ = 0 (21)

where φ̃(0) = 1, and

G(z) = 1

X3N0

[
β2
µ2

X3
− 5

4
γX2

1δ
2

]
. (22)

In all the previous calculations, pulse parameters are described by equations which are
like Newton equations of motion for a particle in a given potential. It is also possible and
useful to express the CV equations of motion in terms of first-order derivative of CVs with
respect to z. Here we assume the following form for φ̃ and S:

φ̃ = exp

[−(t −X2)
2

X2
3

]
(23a)

S = 1
2X4(t −X2)

2 +X5(t −X2) +X6 (23b)

where X4(z) and X5(z) represent the pulse chirp and central frequency, respectively. Then
comparing equations (14) and (23b) we find

Ẋ3 = −β2X4X3 (24a)

Ẋ2 = −β2X5. (24b)

Using equations (11), (16b), (19), (20) and (22) we obtain the remaining CV equations of
motion as

Ẋ1 = β2

2
X1X4 (25a)

Ẋ4 = −β2

(
4

X4
3

−X2
4

)
−

√
2γX2

1

X2
3

(25b)

Ẋ5 = 0 (25c)

Ẋ6 = −β2

(
X2

5

2
− 1

X2
3

)
+

5

4
√

2
γX2

1 . (25d)
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Thus, we have derived the CV equations of motion for the NLSE (1) using the direct averaging
method without the help of the Lagrangian. One can also derive the same CV equations using
the variational approach from the Lagrangian corresponding to the NLSE (1). As the direct
averaging method does not require a Lagrangian for the derivation of the CV equations, in the
following we derive the CV equations for a dissipative system such as the generalized NLSE.

The generalized NLSE takes the form [1, 2]

ψ̇ + i
β2

2
ψtt − iγ |ψ |2ψ = −α

2
ψ +

β3

6
ψttt − iψγr(|ψ |2)t − γs(|ψ |2ψ)t (26)

where α, β3, γr and γs represent the fibre losses, third-order dispersion, stimulated Raman
scattering and self-steepening parameters, respectively.

Substituting equation (2) into (26) leads to the following set of coupled equations:

φ̇

φ
= β2φtSt

φ
+
β2

2
Stt − α

2
+
β3

6

[
φttt

φ
− 3

φtS
2
t

φ
− 3StStt

]
− 3γsφφt (27a)

Ṡ = γφ2 +
β2S

2
t

2
− β2φtt

2φ
+
β3

6

[
3φttSt
φ

+
3φtStt
φ

+ Sttt − S3
t

]
− γsStφ

2 − 2γrφφt . (27b)

Solving equations (27) directly for S(z, t) (as we did earlier for NLSE) is extremely
complicated. In such a situation, straight away one has to postulate a suitable ansatz for φ and
S, and thus, the precise form of the ansatz functions which introduce the CVs become crucial.
Equations (7) and (23b) show that ansatz functions for the NLSE (1) are given by

φ(z, t) = X1(z)φ̃

[
t −X2(z)

X3(z)

]
(28a)

S(z, t) = 1
2X4(z)[t −X2(z)]

2 +X5(z)[t −X2(z)] +X6(z) (28b)

which contain six collective variables, X1, X2, X3, X4, X5 and X6, which have a proper
physical meaning. Also, for generalized NLSE (26) also, we take the same ansatz functions,
but for simplicity and without loss of generality, we assume φ̃ to be a Gaussian. One can also
assume any other desired form for the ansatz functions which give a proper physical meaning
for the CVs. Substituting the ansatz functions (28) into equations (27), we obtain

−(X5 +X3X4ξ)Ẋ2 +
X2

3Ẋ4ξ
2

2
+X3Ẋ5ξ + Ẋ6 = β2

(
− 2

X2
3

+
X2

3X
2
4

2

)
ξ 2 + β2X3X4X5ξ

+β2

(
1

X2
3

+
X2

5

2

)
+ γX2

1φ̃
2 + β3

(
2X4

X3
− X3

3X
3
4

6

)
ξ 3

+β3

(
2X5

X2
3

− X2
3X

2
4X5

2

)
ξ 2 − β3

(
2X4

X3
+
X3X4X

2
5

2

)
ξ

−β3

(
X5

X2
3

+
X3

5

6

)
+

4γrX2
1ξ φ̃

2

X3
− γs(X

2
1X5 +X2

1X3X4ξ)φ̃
2 (29a)

Ẋ1

X1
+
Ẋ3ξ

2

2X3
+
Ẋ2ξ

X3
= −2β2X4ξ

2 − 2β2X5ξ

X3
+
β2X4

2
− αX1

2
− β3X4X5

2
+

6γsX2
1ξ φ̃

2

X3

+β3

(
X3X

2
4 − 4

3X3
3

)
ξ 3 + 2β3X4X5ξ

2 + β3

(
2

X3
3

− X3X
2
4

2
+
X2

5

X3

)
ξ. (29b)

Now, we apply the direct averaging procedure to obtain the CV equations of motion. We
present the calculations in three steps as follows:
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Step 1. Taking the average of equations (29a) and (29b) yields

−X5Ẋ2 +
X2

3

8
Ẋ4 + Ẋ6 = β2

2

(
1

X2
3

+
X2

3X
2
4

4
+X2

5

)
+
γX2

1√
2

−β3

2

(
X5

X2
3

+
X2

3X
2
4X5

4
+
X3

5

3

)
− γsX

2
1X5√
2

(30a)

Ẋ1

X1
+
Ẋ3

2X3
= −α

2
. (30b)

Step 2. Multiplying equations (29a) and (29b) by ξ and averaging the resulting equation yields

Ẋ5 −X4Ẋ2 = β2X4X5 − β3

(
X4

2X2
3

+
X4X

2
5

2
+
X2

3X
3
4

8

)
+

√
2γrX2

1

X2
3

− γsX
2
1X4

2
√

2
(31a)

Ẋ2 = −β2X5 + β3

(
1

2X2
3

+
X2

5

2
+
X2

3X
2
4

8

)
+

3γsX2
1

2
√

2
. (31b)

Step 3. Differentiating equations (29a) and (29b) twice, with respect to ξ and averaging the
resulting equation yields

Ẋ4 = −β2

(
4

X4
3

−X2
4

)
−

√
2γX2

1

X2
3

+ β3

(
4X5

X4
3

−X2
4X5

)
+

√
2γsX2

1X5

X2
3

(32a)

Ẋ3 = −β2X3X4 + β3X3X4X5. (32b)

Thus, equations (30)–(32) give the simplest system of six equations for the six CV
equations of motion. Solving the system of equations (30)–(32), we obtain the following
explicit form for the CV equations of motion:

Ẋ1 = −α
2
X1 +

β2

2
X1X4 − β3

2
X1X4X5 (33a)

Ẋ2 = −β2X5 + β3

(
1

2X2
3

+
X2

5

2
+
X2

3X
2
4

8

)
+

3

2
√

2
γsX

2
1 (33b)

Ẋ3 = −β2X3X4 + β3X3X4X5 (33c)

Ẋ4 = −β2

(
4

X4
3

−X2
4

)
−

√
2γX2

1

X2
3

+ β3

(
4X5

X4
3

−X2
4X5

)
+

√
2γsX2

1X5

X2
3

(33d)

Ẋ5 =
√

2γrX2
1

X2
3

+
γsX

2
1X4√
2

(33e)

Ẋ6 = β2

(
1

X2
3

− X2
5

2

)
+

5γX2
1

4
√

2
+ β3

(
X3

5

3
+
X2

3X
2
4X5

8
− X5

2X2
3

)
+
γsX

2
1X5

4
√

2
. (33f)

It is interesting to mention that in the absence of fibre losses, third-order dispersion, stimulated
Raman scattering and self-steepening (i.e. α = β3 = γr = γs = 0), the CV equations (33)
reduce to the CV equations (24) and (25).
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To conclude, we have successfully derived the CV equations of motion for the generalized
NLSE (26), which includes important higher-order effects for pulse propagation in optical
fibres, without the help of any Lagrangian. Importantly, in nonlinear fibre optics, there exists a
host of nonlinear partial differential equations, which do not possess the Lagrangian function.
In such cases, one cannot apply the Lagrangian approach, whereas this direct averaging
approach can be used in all cases for obtaining the CV equations of motion without the help
of the Lagrangian function. With these CV equations, a deep insight into the modification of
the dynamics due to a particular effect of any higher-order term of the generalized NLSE can
be obtained. We have shown how to derive the CV equations of motion for both conservative
(NLSE) and non-conservative (generalized NLSE) systems without any perturbation theory.
Hence, in a similar way one can also derive the CV equations for any system equation with
other effects due to the presence of periodic amplifiers, filters, etc, in optical fibre transmission
lines.
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